The Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and the Deviance Information Criterion (DIC) are perhaps the most widely-used information criteria (IC) in model building and selection. A fourth, Minimum Description Length (MDL), is closely related to the BIC. In a nutshell, they provide guidance as which alternative model provides the most "bang for buck," i.e., the best fit after penalizing for model complexity. Penalizing for complexity is important since, given candidate models of similar predictive or explanatory power, the simplest model is most likely to be the best choice. In line with Occam's razor, complex models sometimes perform poorly on data not used in the model building. There are several others, including AIC3, SABIC, and CAIC, and no clear consensus among authorities as far as I am aware as to which is "best" overall. IC will not necessarily agree on which model should be chosen. Cross-validation, Predicted Residual Error Sum of Squares (PRESS) statistic, a kind of cross-validation, and Mallows’ Cp are also used instead of IC. Information criteria are covered in varying levels in detail in most statistics textbooks and are the subject of numerous academic papers. I know of no single go-to source on this topic.
The Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and the Deviance Information Criterion (DIC) are perhaps the most widely-used information criteria (IC) in model building and selection. A fourth, Minimum Description Length (MDL), is closely related to the BIC. In a nutshell, they provide guidance as which alternative model provides the most "bang for buck," i.e., the best fit after penalizing for model complexity. Penalizing for complexity is important since, given candidate models of similar predictive or explanatory power, the simplest model is most likely to be the best choice. In line with Occam's razor, complex models sometimes perform poorly on data not used in the model building. There are several others, including AIC3, SABIC, and CAIC, and no clear consensus among authorities as far as I am aware as to which is "best" overall. IC will not necessarily agree on which model should be chosen. Cross-validation, Predicted Residual Error Sum of Squares (PRESS) statistic, a kind of cross-validation, and Mallows’ Cp are also used instead of IC. Information criteria are covered in varying levels in detail in most statistics textbooks and are the subject of numerous academic papers. I know of no single go-to source on this topic.
In general, many financial experts support their clients’ desire to buy cryptocurrency, but they don’t recommend it unless clients express interest. “The biggest concern for us is if someone wants to invest in crypto and the investment they choose doesn’t do well, and then all of a sudden they can’t send their kids to college,” says Ian Harvey, a certified financial planner (CFP) in New York City. “Then it wasn’t worth the risk.” The speculative nature of cryptocurrency leads some planners to recommend it for clients’ “side” investments. “Some call it a Vegas account,” says Scott Hammel, a CFP in Dallas. “Let’s keep this away from our real long-term perspective, make sure it doesn’t become too large a portion of your portfolio.” In a very real sense, Bitcoin is like a single stock, and advisors wouldn’t recommend putting a sizable part of your portfolio into any one company. At most, planners suggest putting no more than 1% to 10% into Bitcoin if you’re passionate about it. “If it was one stock, you would never allocate any significant portion of your portfolio to it,” Hammel says.
China’s stock markets are some of the largest in the world, with total market capitalization reaching RMB 79 trillion (US$12.2 trillion) in 2020. China’s stock markets are seen as a crucial tool for driving economic growth, in particular for financing the country’s rapidly growing high-tech sectors.Although traditionally closed off to overseas investors, China’s financial markets have gradually been loosening restrictions over the past couple of decades. At the same time, reforms have sought to make it easier for Chinese companies to list on onshore stock exchanges, and new programs have been launched in attempts to lure some of China’s most coveted overseas-listed companies back to the country.